
AD-A276 721

Technical Report 1451 macs Lisp

in Edwin Scheme

Matthew Birkhol

MIT Artificial Intelligence Laboratory

REPORT DOCUMENTATION PAGE I____
I OBMNo. 0704-0188

___ttbrm oWhgo ffcw rIomm pam n Repais, 2 JImc EHvUIAg. SWe 12D1. Akioa.
IAs~ tad. Offild Uaaefw and Prda wd M704-018. Washbo DC 2IW&

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1993 technical report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Emacs Lisp in Edwin Scheme N00014-92-J-4097

NSF MIP-9001651

6. AUTHOR(S)

Matthew Birkholz

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Massachusetts Institute of Technology
Artificial Intelligence Laboratory AI-TR 1451
545 Technology Square
Cambridge, Massachusetts 02139

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
Office of Naval Research
Information Systems
Arlington, Virginia 22217

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

DISTRIBUTION UNLIMITED

13. ABSTRACT (Maximum 200 words)

The MiT-Scheme program development environment includes a general-purpose text editor,
Edwin, that has an extension language, Edwin Scheme. Edwin is very similar to another
general-purpose text editor, GNU Emacs, which also has an extension language, Emacs Lisp.
The popularity of GNU Emacs has lead to a large library of tools written in Emacs Lisp.
The goal of this thesis is to implement a useful subset of Emacs Lisp in Edwin Scheme. This
subset was chosen to be sufficient for simple operation of the GNUS news reading program.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Scheme extension language 77
editor multi-language environment 16. PRICE CODE
interpreted language

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN 754"1-28&-55M MMO "M 296 (Hey. 2-%9;

P .wbed byANSI MM 2S.IS
2l1-102

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. TR-1451 September 1993

Emacs Lisp in Edwin Scheme

by

Matthew Birkholz Accesion For
NTIS CRA&I)

DTIC TAB 11
U:;av&,tnco,ced 0
J ;IS tific --tio n

ByE~

Dish ibution f

Avaflability Codes

Avail and / or
Dist Special

Copyright @ Matthew Birkholz, 1993

This report is a revised version of a thesis submitted to the Department. of Electrical Engineering
and Computer Science in September, 1993, in partial fulfillment, of the requirements for the
degree of Mast.'r of Science.

This report, describes research clone at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support, for this research is provided in part, by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research contract N00014-
92-J-4097 and by the National Science Foundation under grant number MIP-9001651.

Abstract

The MIT-Scheme program development environment includes a general-purpose
text editor, Edwin. Edwin provides an integrated platform for a number of tools
useful to a. software engineer. Such tools are easily written in Edwin's extension
language, Edwin Scheme - Scheme augmented with editor data types.

Edwin is very similar in appearance and behavior to another general-purpose
text editor, GNU Emacs. Like Edwin, GNU Emacs provides a number of useful
tools, written in its extension language, Emacs Lisp. The popularity of GNU
Emacs, combined with its easy extensibility, has lead to a large and growing library
of tools and enhancements written by GNU Emacs users worldwide. The goal of
this thesis is to allow Edwin users to take advantage of this enormous library of
Emacs Lisp code.

The size and complexity of the Emacs and Edwin systems makes realization of
this goal impossible given the resources available to this project. Instead, a useful
compromise was sought. From the beginning, this project. took as a concrete goal
the emulation of a particularly valuable GNU Emacs tool, the GNUS news reading
program (written by Masanobu UMEDA [umerinamse.kyutech.ac.jp]).

To achieve this goal, an Emacs Lisp interpreter was written in Edwin Scheme.
This interpreter implements approximately 70% of the 734 primitives of the Emacs
Lisp language. It also integrates the Emacs and Edwin user interfaces and envi-
ronments to such an extent that the casual user will not notice the differences
between the emulated Emacs Lisp windows, buffers, and commands, and those of
a normal Edwin Scheme program. The result is that the unmodified source code
for the GNUS news reading program can be loaded into Edwin, and the program's
commands for marking, reading and filing news articles can be used as though
they were normal Edwin commands.

Acknowledgments

I could not have done this alone.
On Jim Miller's recommendation I made Edwin my home, and through his

contacts I learned of the MIT Scheme group's interest in a project of this sort. His
enthusiasm for the project was crucial in bringing Chris Hanson and me together.
As my thesis advisor, Chris deserves more than a little credit for the goal-oriented
approach to this project. Without his direction. I am sure I would still be working
on it.

In addition to these principle characters, there are many friends, relatives, and
even thoughtful acquaintances who have contributed in small yet important, ways
to the successful completion of this work. I will not try to list them all, but there
are a few who deserve special mention. Jinx, BAL, Stephen, Arthur, and Becky
are just a few of the MIT Schemers that have made me feel welcome. Before I
left DEC's Cambridge Research Lab, I relied on the support of Victor Vyssotsky
and Phill Aplev, and benefited from the concern and well-wishes of many others.
Earlier, at DEC's Artificial Intelligence Laboratory, I was constantly encouraged
to "finish your thesis!" by Dave Buffo, Tom Cooper, Eva Hudlicka, and others.

Finally, I could hardly have survived this long, certainly not long enough to
have finished this thesis, without the super-human love and patience of my mother
and father, and the extraordinary Lori Birkholz.

3

Contents

1 Introduction 7
1.1 Related Work 11
1.2 Summary 12

2 The Interpreter 15
2.1 Subrs ... 19
2.2 Symbols 21

9.9.1 Simple Symbols 2

2.2.2 Variable Symbols 23
2.2.3 Generic Symbols 23

3 Reflecting Emacs's State in Edwin 25
3.1 User Variables25
3.2 The Current Buffer 26
3.:3 Markers 26
3.4 Window Points 27
3.5 Named Commands 28
3.6 Keymaps ... 29
3.7 Modes 29
3.8 Prompting and Completion 31

4 Compatibility Issues 33
4.1 Signaling Errors 33
4.2 Ignoring Deficiencies 35
4.3 Being Innocuous 36
4.4 Handling Side-Effects 36
4.5 Naming Commands and Variables 37
4.6 Using Comtabs For Keymaps 39

4.6.1 special keys 39
4.6.2 esc-map 40

4.7 Integrating Essential Emacs Lisp Facilities 40
4.8 Miscellaneous Other Discrepancies 41

4.8.1 mode-line-format 41
4.8.2 this-command and last-command 42
4.8.3 local-set-key 42
4.8.4 process-status-message 43
4.8.5 substitute-command-keys 43

5 Conclusion 45

8

A The Primitives 49
A.0.6 Index 49
A.0.7 Documentation 67

7

1 Introduction

The MIT-Scherne[3] program development environment includes a general-purpose
text editor, Edwin. Edwin provides language-specific support for editing Scheme
source code, plus convenient interfaces to other tools in the MIT-Scheme envi-
ronment, e.g. the debugger and the interpreter. In addition to these software
development functions, Edwin provides tools for manipulating directories of files,
running Unix programs as subprocesses, reading Unix mail messages, and editing
source files written in other languages. Consequently, Edwin fills the same role
as the general-purpose editor GNU Emacs[9], providing an integrated platform for
many of the tools used by a software engineer.

GNU Emacs is a general-purpose text editor in widespread use. It is easily
extended via its powerful extension language, Emacs Lisp[5]. This ease of extensi-
bility has encouraged the development of a large library of tools and enhancements
written by GNU Emacs users worldwide. This library continues to grow as users
experiment with new tools for a variety of tasks. The goal of this thesis is to show
that Edwin can be extended so that it can take advantage of this enormous library
of Emacs Lisp code.

While Edwin is very similar in appearance and behavior to GNU Emacs, it is
nonetheless very different internally. Edwin's extension language is Edwin Schrme
- Scheme[2] augmented with editor data types. Thus, Edwin Scheme inherits
Scheme's lexical scoping of variables, whereas Emacs Lisp uses dynamic scoping.
Edwin Scheme's internal data structures also differ from those of Emacs Lisp in
many details. As a result, there is no straightforward translation from Emacs Lisp
code to Edwin Scheme code.

A few valuable GNU Emacs tools have been translated by hand into Edwin
Scheme code, and the non-trivial translation has offered opportunities to improve
on the behavior of the Emacs tools. However, the significant translation effort
discourages experimenting with interesting new Emacs tools. Also, the translated
source code is radically different from the original Emacs Lisp making it. difficult
to track later improvements to the Emacs tools and make corresponding improve-
ments to the Edwin tools. To avoid both problems, Emacs Lisp programs need to
be loaded and evaluated directly, without modifications to the Emacs Lisp source
code.

To solve this problem, an Emacs Lisp interpreter was written in Edwin Scheme.
This interpreter does its best to faithfully implement the behavior of the original
Emacs Lisp interpreter and runtime system as provided by GNU Emacs version
18.59, while also integrating this runtime system with the existing Edwin runtime
system. Both of these systems are fairly large and complex. It is beyond the scope
of this thesis to describe the many data. structures and routines used in both Emacs
Lisp and Edwin Scheme. Instead, it is assumed that the reader is well acquainted
with both systems, or at least, is familiar with Lisp environments and equipped

8 1 INTRODUCTION

with the Emacs User Manual[9], the Emacs Lisp Reference Manual[5], and the
MIT-Scheme Reference Manual[4].

The rest of this introduction will orient the well-equipped reader in the direc-
tion used to approach the problem. It describes the motivation for choosing to
implement an Emacs Lisp interpreter and to emulate its runtime environment. It
also describes the advantages sought when attempting to integrate the emulated
environment's state with Edwin's, and notes the issues that arise when melding
the two.

The problem of using unmodified Emacs Lisp programs could be solved by au-
tomatic translation into Edwin Scheme by an Emacs Lisp compiler. The compiler
would take over the job currently done by hand. However, the compiler would
have to be rather sophisticated in order to produce the non-trivial translation. It
would have to do extensive global analysis in order to determine the actual scope
of the indeterminately scoped Emacs Lisp variables. This is necessary if they
are to be implemented by Edwin Scheme's efficient local variables. The compiler
would also have to do extensive type inference when operations on Emacs Lisp
data types have to be translated into operations on dissimilar Edwin Scheme data
types. These analyses would be particularly difficult because of the widespread use
in Emacs Lisp programs of data structures storing arbitrary functions. Without
extensive analysis, the compiler will have to produce code that does little more
than mimic the original Emacs Lisp interpreter. Finally, Emacs Lisp includes an
eval primitive that gives programmatic access to the Emacs Lisp interpreter. It
is used frequently, even in some of the more desirable Emacs Lisp programs. All
of these things argue strongly for the implementation of an interpreter.

The Emacs Lisp interpreter and runtime system could be emulated in the MIT-
Scheme environment by a program entirely separate from Edwin. The emulator
could manage its own windows and buffers, use its own variables and keymaps, and
dispatch on its own command key input to execute Emacs Lisp commands. The
program could emulate Emacs with complete accuracy, but it would offer few ad-
vantages over running Emacs itself as a separate process. The program would run
Emacs Lisp programs in MIT-Scheme environment, making them more accessible
for integration with Edwin. but the separate emulator alone would not actually
provide any integration. For example, there would still be both Emacs Lisp and
Edwin Scheme variables named fill-column, each one having the same meaning
to the user. Text would still have to be explicitly extracted from Emacs buffers
and inserted into Edwin buffers before Edwin Scheme programs could manipulate
it.

Emulating Emacs Lisp in the MIT-Scheme environment, will be most advanta-
geous when the Emacs Lisp emulation can reflect its state in Edwin's state and
vice versa. This will integrate multiple representations of what are conceptually
the same things. When Emacs Lisp code sets its fill-column variable, the in-

9

formation will be reflected in the value of the Edwin Scheme variable; and, when
Edwin Scheme code sets its fill-column variable, the new value will be reflected
in the Emacs Lisp variable. Whether Edwin's state and the emulator's state are
automatically kept. consistent or actually shared, the result is the same: the user
does not have to remember to set both versions of the default right margin.

Integration of the two runtime systems will also allow either kind of program
to cooperate with the other. When an Emacs Lisp program like GNUS displays a
buffer containing the text of a Usenet article, the Emacs buffer will be reflected by
an Edwin buffer with the same content. Normal Edwin commands can then ma-
nipulate the article text. The GNUS program could even be extended with Edwin
commands written using the powerful facilities of the MIT-Scheme environment.

Integration of the user interfaces will have especially compelling advantages.
The user will only have to interact with one interface and will not have to distin-
guish and switch between two, slightly different interfaces. To do this, the Emacs
Lisp emulator will have to reflect Emacs windows as Edwin windows, and Emacs
key bindings as Edwin key bindings. If the command key dispatching mechanisms
of Emacs and Edwin are significantly different, the necessary reflections may be
difficult to implement.

Accurately reflecting each system's state in the other's state can present a
number of problems. Conceptually identical information may be represented in
very different ways. An atomic value could simply be translated from one format
to another depending on how it is accessed. An aggregate value, however, would
have to be translated into an analogous data structure in the other runtime system,
and the two copies would have to be kept consistent. Consistency is particularly
difficult to implement and expensive to maintain when side-effects to the data
structures are possible.

Fortunately, a completely accurate reflection is not necessary. Side-effects to
some Emacs Lisp runtime data, structures may not be found in the majority of
interesting programs, while others might simply be ignored. Some data structures
are not typically modified by Emacs Lisp programs because they are reserved to
the user. Others are modified only to form new values which are then re-installed
in the runtime system. The reflection in the other runtime system could simply be
a new copy translated from the value that was re-installed. Side-effects to these
data structures would not have to be detected in order to make many programs
work. While side-effects to other types of runtime system data, structures might
be important enough to warrant, their detection and reflection, so far this has not
been necessary.

Some operations of Emacs Lisp can make accurate reflection more difficult, than
if they were not allowed. If these operations are rarely used, the emulator may
be able to restrict, such usage so as to simplify the translation or sharing of state
information. A good example is the use of vector operations to access and modify

10 1 INTRODU(CTION

bindings in some Emacs Lisp keymaps. This is possible because some Emacs Lisp
keymaps are represented by vectors. However, most Emacs Lisp programs only use
the more abstract operations for accessing and modifying keymap bindings (e.g.
lookup-key and define-key). Restricting the emulation of Emacs Lisp keymaps
so that only the abstract operations are supported allows Emacs Lisp keymnaps
to be represented by Edwin command tables. By sharing this representation.
Emacs Lisp's command dispatch mechanism is much more easily reflected in Edwin
Scheme's.

While restrictions on Emacs Lisp programs can ease the difficulty of accurate
emulation, so can generalizations of Edwin Scheme. Edwin already allows arbi-
trary procedures to be specified to perform certain tasks. The interface to Edwin's
minibuffer completion commands can be so specified, allowing the emulator to
provide special procedures that compute completions from Emacs Lisp data struc-
tures. In contrast, the Emacs minibuffer completion commands only work with a
couple specific data, structures and have very few escapes into procedural code.

However, there are still areas where Edwin could be further generalized. Ed-
win could even be changed to directly support Emacs Lisp data. structures. For
example, Edwin's command dispatch mechanism could be generalized to recognize
and handle Emacs Lisp keymaps.

This project did not pursue most of these opportunities, preferring to limit
modifications to Edwin and to avoid adding Emacs Lisp specific code to it. This
has made some parts of the emulator more difficult to implement or imposed re-
strictions on its accuracy or completeness. Future work may abandon the complete
separation of the Emacs Lisp emulator from Edwin. The advantages of doing this
are considered in later sections.

It is worthwhile to note that complete emulation and integration of the standard
Emacs Lisp runtime system is difficult simply because of the system's size. The
standard Emacs Lisp runtime system is based on 587 primitive functions manipu-
lating 147 global variables and 11 data types, all implemented in C. It also includes
the functions and variables declared in 22 essential Emacs Lisp files pre-loaded into
every Emacs, 50 packages and modes autoloaded by the standard configuration,
and some 70 additional files.

Complete integration would unify all the redundant functionality, such as the
Emacs Lisp and Edwin Scheme interfaces to sendmail, but integrating all of the
functionality provided by Emacs with all of the functionality provided by Edwin
would take more time than this project allows. Less than complete integration
would still accrue benefits where it is pursued, as described above. Where it. is
not, there may continue to be redundancies such as the separate fill-column
variables. There may also continue to be gaps in cooperation such as Edwin
Scheme commands that, do not have their intended effect because Emacs Lisp
data was not available in an analogous Edwin Scheme form. However, these are

1.1 Related Wbrk 11

just inconveniences. It is the accuracy of the emulation that allows Einacs Lisp
programs to run.

A complete emulation would only have to implement the Emacs Lisp primnitives.
Unfortunately, some of these primitives require functionality not supported by
Edwin. Implementing them would have been very time-consuming and would have
enabled few additional programs to run. This project focuses instead on emulating
the essential primitives that are required for the operation of the majority of Emacs
Lisp programs.

The essential Emacs Lisp primitives and the essential integration of Eniacs and
Edwin were hard to define at the beginning of this project. The large number of
tradeoffs between accurate emulation, tight integration. and cost of implementation
would have also made it hard to determine whether the resulting emulation was
a success. Instead, a concrete goal was chosen that would demonstrate a useful
emulation of Emacs Lisp and a usable integration with Edwin's user interface.
That goal was the rudimentary operation of a sophisticated and valuable Emacs
Lisp program, the GNUS news reader.

1.1 Related Work

The techniques used in this thesis project. were largely inspired by generic inter-
preter implementation techniques. The Edwin Scheme code for the Emacs Lisp
interpreter is a straightforward interpreter implementation similar to the meta-
circular evaluator described in [1] and closely follows the implementation in C that
is distributed with GNU Emacs. The emulation of the Emacs Lisp data types and
functions had to conform to the detailed behavior of GNU Emacs's implementation.
and were written to take advantage of the most abstract functionality of Edwin
Scheme. Thus, the source code and documentation of these two implementations
have had the largest impact on the nature of this work.

It. is a peculiarity of this project that programs written in two different lan-
guage, to manipulate two different runtime environments must nevertheless oper-
ate in one shared environment. A similar situation is often addressed by compat-
ibility libraries. For example, C applications written for BSD Unix can be run in
a DOS environment provided all the required functionality is implenlented by an
available BSD-compatible C library.

Compatibility libraries may address the same goal as this project- emulating
a different runtime environment within the native one. However, they commu-
nicate information to their client, programs through very simple data structures
and without sharing. This sharing is a. ubiquitous feature of both Emacs Lisp and
Edwin Scheme. Procedures written in both languages interface via call by sha4 ring
where the information passed between procedures. e.g. from a runtime procedure
exposing information about thie runtimne environment to an applicat ion program, is
identified by its implementat ion in memory, and where imodificat ions to this mere-

12 1 INTRODUCTION

orv can communicate information back to the runtime environment. The issues
raised by data structures that are shared between the runtime environment and
an application program are not typically addressed by compatibility libraries.

Related work on heterogeneous systems also avoids these issues. Most of the
work in heterogeneous systems involves the implementation of distributed services
made up of cooperating applications residing oil different machines with only a net-
work for communication. Applications pass information via a Remote Procedure
Call abstraction that only provides call by copying behavior. [7] Thus, the issues of
shared data structures never arise.

In mixed-language programming systems, the different modules of an applica-
tion can be written in different languages and can use shared memory to share data
structures. In some of these systems, information is still passed between modules
using call by copying[8][6]. Other systems agree in advance on the implementa-
tion of any data structures that will be shared between languages (e.g. the VAX
calling standard). Finally, many modern Lisp systems provide a bridge between
their native data types and those of other languages via foreign function interfaces.
These interfaces either use call by copying semantics for data structures that are
transparently converted between native data types, or they provide operations for
declaring and manipulating alien data structures as new types. This project must
support shared data that can be manipulated as though native data structures in
two languages.

1.2 Summary

The motivation for this work was the desire to run Emacs Lisp programs as if
they were Edwin Scheme programs, without having to translate them into Ed-
win Scheme by hand. The approach that was taken was to emulate the Emacs
Lisp interpreter and runtime environment and to integrate the emulated environ-
ment with Edwin's. In particular, the emulated Emacs user interface (including its
windows and command key dispatch mechanism) were to be integrated with Ed-
win's, so that Edwin users could continue to use one, familiar interface. Complete
and accurate emulation and integration was impractical for a variety of reasons.
However, there seemed to be acceptable compromises in both accuracy and com-
pleteness that would allow a minimally useful system be built with the available
resources. As a concrete goal, the minimally useful system was expected to be
able to execute the GNUS news reading program well enough that articles could
be retrieved and read using the normal Edwin user interface.

Many compromises were made in the accuracy of the Emacs Lisp emulation,
and many aspects of Emacs and Edwin have not been integrated. The follow-
ing sections document the implementation of the Emacs Lisp emulator and these
deficiencies, in anticipation of further work. Section 2 describes the implenienta-
tion of the Emacs Lisp interpreter. In particular, the irnl)ienentation of Emacs

1.2 SummarY 13

Lisp's symbols and subrs is discussed, showing how they support the reflection

of the emulated Emacs Lisp runtime environment in the Edwin Scheme environ-
ment. Section 3 tackles the details of implementing that reflection. First, some of
the guiding principles and useful techniques are presented. Then, the emulation
of specific Emacs Lisp data structures and functionality is described. Section 4
discusses the specific compatibility issues raised by the less than complete and
accurate Emacs Lisp emulation. The conclusion summarizes the qualified success
of the project and the work left to be done.

14 1 INTRODUCTION

15

2 The Interpreter

An Emacs Lisp program starts out as a text file describing a sequence of Emacs
Lisp expressions, which the load primitive can read and evaluate. The evaluation
of these expressions typically installs the commands, hooks, and command key
bindings of the Emacs Lisp program in the runtime system. The program can
then be invoked by the user directly via. command key input, or indirectly through
commands that run its hooks.

This section describes the process of reading an Emacs Lisp program - con-
verting the text describing Emacs Lisp expressions into data structures that can
be evaluated by the interpreter. It also describes the operation of the interpreter
proper - how the eval primitive interprets expressions as instructions for installing
and later executing the Emacs Lisp program. In this discussion, it is assumed that
the reader is familiar with the general organization and operation of Lisp inter-
preters and runtime environments. This section will focus on the peculiarities
of reading and evaluating Emacs Lisp programs. In so doing, it will describe in
detail the representation and interpretation of two important Emacs Lisp data
types. These data types provide the hooks that lead the interpreter into the Ed-
win Scheme code that will emulate the Emacs Lisp runtime system and reflect its
state in Edwin.

The first stage of interpreting Emacs Lisp code is to read it, to produce a
representation of the Emacs Lisp data structures denoted by the input text. The
syntax of Emacs Lisp code is similar to that of Edwin Scheme, but there are
differences in the syntax of character, string, and vector literals that required that
a new reader be written. The new reader could have produced instances of special
Emacs Lisp types distinct from the Scheme data types, but few of the Emacs Lisp
types differed from an analogous Scheme data type. The implementation actually
started out making this distinction, using distinct operators to manipulate the
Emacs Lisp data types. There was no performance penalty because the operators
were substituted for equivalent Scheme operators at compile-time. However, the
constant conversions, particularly from literal Scheme constants to their Emacs
Lisp equivalents, caused the clarity of the resulting code to suffer. Eventually,
the reader was revised to produce native Scheme data types, and the rest of the
source code was changed to manipulate them using the normal Scheme operators.
The reader now produces Scheme integers to represent Emacs Lisp numbers and
characters. Scheme strings and vectors represent Emacs Lisp strings and vectors.

A Scheme symbol is not used to represent an Emacs Lisp symbol because the
two objects are so different. When interned into the global Scheme obarray, a
Scheme symbol is unique to a case-insensitive name, but has no inherent state
other than its name. In contrast, an Emacs Lisp symbol is interned into one
of many, possibly user-defined obarrays. (In Emacs, obarrays are vectors whose
elements are initially zero. The emulator uses the same representation so that

16 2 THE INTERPRETER

Emacs Lisp code that creates such a vector and uses it, as an obarray will be
emulated correctly.) An interned Emacs Lisp symbol is unique to a case-sfnsiti'.t
name and an obarray, and it has additional inherent state: a value, a function, a
property list. A Scheme structure 1 is used to represent an Emacs Lisp symbol
and hold this state, just as a C struct is used in Emacs. This maximizes the
performance of the interpreter, which must access a symbol's function and current
value quickly. The Scheme structure is also useful to hold information about how
the Emacs Lisp symbol is being reflected into Edwin. (This is described in more
detail in Section 2.2.)

Like Emacs Lisp strings and vectors, Emacs Lisp lists are represented by native
Scheme lists, implying that Emacs Lisp conses are represented by Scheme pairs and
Emacs Lisp's empty list is represented by Scheme's empty list. This takes some
care because Emacs Lisp represents its empty list with a, symbol named nil. Like
any other symbol, this symbol can have a function and property list, and so ought
to be represented by a symbol object. In fact, the emulator does create a symbol
object to emulate the Emacs Lisp symbol nil. It never appears at the ends of lists
or anywhere else in Emacs Lisp data structures, but it is substituted for Scheme's
empty list whenever a symbol operation is being applied. The fields of this symbol
structure hold the name, function, property list, and any other information about
nil.

These are all of the Emacs Lisp data structures that can be denoted by input
text. Instances of the other Emacs Lisp data types, such as windows, buffers,
and markers, are parts of the Emacs Lisp runtime system and are represented
according to how they are reflected in Edwin's runtime system. This is discussed
in Section 3.

Once Emacs Lisp code has been read, it can be evaluated by the eval primi-
tive. As in the meta-circular evaluator of [1], this primitive, along with the funcall
primitive, forms the core of the interpreter. The eval primitive is applied to an
expression to start the process of computing the expression's value. The nature
of this process depends on the type of the expression. If the expression is a sim-
ple symbol, the value of the symbol is returned. The value is computed by the
%symbol-value procedure, which is described in Section 2.2. Any other type of
object is either a list representing a function call (of which special forms are a
special case) or a self-evaluating object.

Normal function call expressions are evaluated by applying a function, de-
scribed by the first element of the expression, to the values of the argument ex-
pressions (the rest of the elements of the expression). However, Emacs Lisp, like
all Lisps, uses the same list syntax to represent special forms and macro calls.

'A Scheme siruclure is an object, that, contains a number of named fields. Tile type of a Scheme
structure is declared by a define-structure expression whose syntax and semantics are similar
to Common Lisp defstruct expressions. define-structure is an MIT-Scheme extension to
standard Scheme and is described in [4].

17

These other kinds of expressions must be handled differently; so, when applied to
a function call expression, a Lisp evaluator must first determine, based on the first
element of the expression, whether it is a normal function call, a macro call, or a
special form.

In Emacs Lisp, the first element of a function call expression can be a symbol.
The symbol can be thought of as the name of a function, and the function it names
is tile value of the function field of the symbol structure (mentioned above, and
described in more detail in Section 2.2). This field can be empty, causing the eval
primitive to signal void-function. The field can also refer to another symbol.
This is function aliasing. The function named by the first symbol is defined to
be the same function named by the other symbol. An arbitrarily long chain of
function aliasing is possible, with the function field of each symbol pointing to the
next symbol in the chain. To find the ultimate function named by a symbol or chain
of symbols, the eval primitive uses the %function* procedure. This procedure
is actually applied to the first element of a function call expression regardless of
its type. If the first element was a symbol, any function aliasing is resolved and
the named function is returned. If the function aliasing is circular, %function*
will end up in an infinite loop trying to find the end of the chain. A circular
chain could be detected and an error raised without much added expense, but the
implementation was left as it is since this is exactly how the original Emacs Lisp
interpreter works.

Once the %function* procedure has found the function described by the first
element of a function call expression, the eval primitive can determine how to
evaluate the expression. The function can be any of several things: a primitive
subroutine (a subr), a lambda expression, a macro expression, or an autoload
description. If it is not. one of these things, eval signals an invalid-function
error. Otherwise, eval proceeds as follows.

If the function is a subr and the subr is marked as a. special form, then the
evaluator applies the subr to the argument expressions. The subr can then evaluate
the appropriate expressions, depending on the required behavior of the special
form. For example, the first argument expression to the if subr is evaluated. If
the value of the expression is not nil, the second expression is evaluated and its
value is returned by the if subr. If the value of the first expression was nil, the
progn subr is applied to the expressions following the second expression (if any).
The value returned by the progn subr (or nil) is returned by the if subr.

If the function is a subr that is not marked as a. special form, the argument.
expressions are evaluated and the subr is applied to the results. When applying
either type of subr, the Scheme predicate procedure-arity-valid? is used to
detect subrs applied to the wrong number of arguments. This allows the emulator
to signal the appropriate Emacs Lisp error immediately, rather than wait to catch
the Scheme wrong-number-of-arguments condition and then signal the Emacs

18 2 THE INTERPRETER

Lisp error.
If the function is a. lambda expression (a list, starting with a particular Emacs

Lisp symbol named lambda), the argument expressions are each evaluated, produc-
ing a list of argument values. The funcall-lambda procedure takes the lambda
expression and the argument values and executes the function. The funcall-
lambda procedure first examines the lambda expression's parameter list (its sec-
ond element) for any &optional or &rest keywords indicating optional or rest
parameters. During this examination, it rewrites the list of argument values to
include a value of nil for any optional parameters that would otherwise not have
a value, and to collect multiple arguments into a list as the value of a rest param-
eter. The parameter list is also rewritten to produce a new list of the parameter
symbols (without &optional or &rest keywords). If the rewrites are not success-
ful, an Emacs Lisp wrong-number-of-arguments error is signaled. Otherwise, the
%specbind procedure is applied to the parameters, the arguments, and the thunk
during which the bindings should be active. The thunk applies the progn primitive
to the body of the lambda expression (the elements following the second element).

The %specbind procedure is a straightforward implementation of Emacs's shal-
low binding mechanism. When a symbol is bound to a value, %specbind first saves
the symbol's old value (if any) and then sets the symbol to the new value. This
is accomplished using the normal symbol operations %symbol-bound?, %symbol-
value, and %set-symbol-value!. As control passes out of the dynamic extent
of the call to %specbind, the symbol's original state is restored, again using
the normal symbol operations %set-symbol-unbound! or %set-symbol-value!.
%specbind was originally implemented by a call to Scheme's dynamic-wind proce-
dure, which ensured that the code restoring the symbol to its original state would
be run before control passed out of the dynamic extent of the call to %specbind,
whether because of a normal return or a non-local exit.

Unfortunately, Scheme's dynamic-wind mechanism was too expensive to use
every time a symbol was lambda-bound. Instead, %specbind just pushes a record
onto the list assigned to the Scheme variable *specpdl*. The record includes the
symbols that were bound and the states they had before they were bound. If
control exits through %specbind via a normal return, %specbind pops the record
off *specpdl* and uses its information to restore the parameter symbols to their
previous states. Handling non-local exits, however, requires the cooperation of all
Emacs Lisp primitives to which a non-local exit could return. These primitives
must remember the value *specpdl* had when control first. passed through them,
and restore that. value if control returns to them via a non-local exit. These
primitives must restore *specpdl*'s value by popping records and using their
information to restore symbols to the states they had before they' were bound.
When enough records have been popped, *specpdl* will regain its former value
and all symbols that had been subsequently bound will be restored to their original

